FROM DROUGHT TO WET CYCLES: THE CHANGING CLIMATE OF THE CANADIAN PRAIRIES

BY RAY GARNETT AND MADHAV KHANDEKAR

PRESENTED AT THE WATER-ENERGY-FOOD CONFERENCE

MAY 3, 2012 AT THE INN AT THE FORKS

WINNIPEG, MANITOBA

RATIONAL:

The purpose of this research is to improve the climatic early warning system for Canadian Prairie Agri-business essentially through development of regression models and other empirical-statistical approaches for predicting precipitation and temperature during the summer months with lead times of two-four months. The geographical areas of concern are:

1) The Prairies as a whole

2) The Peace River zone

3) Palliser North zone

4) Palliser Brown Soil zone and

5) Eastern Prairie zone

Gross annual sales of prairie grain amount to \$10 billion dollars per year. Saskatchewan example

STUDY AREA

Figure 1. Agro-ecoregions of the northern Great Plains (Padbury et al. 2002, reprinted with permission).

DATA

Potential Monthly Predictors

September-August for the Period

1933-2009
1960-2009
1900-2009
1951-2009
1951-2009
"
"
""
""
66
1901-2009
1900-2009
1979-2009
1967-2009
1900-2009
1900-2009
1970-2009

Predictands

July PDSI Prairies as a whole (PAW) May-July precipitation "

June-July	"	"	"	
June-Aug	"	"	"	
June-Aug	temp		"	
June-July	temp	erature		"

July PDSI Peace River Agricultural Ecological Zone (Ag.Eco) June-July precipitation Peace River June-July temperature " July precipitation " July temperature "

Correlation and regression analysis was then repeated for Palliser North, Palliser Brown Soil and Eastern Prairies Ag Eco zones. Spring wheat yields 1908-2009 Canola yields 1943-2009 Spring wheat protein content 1950-2009

Meteorological drought conditions for September 2001- August 2002 (a). Areas in red are record dry conditions. Contrast with conditions observed September 2005 – August 2006 (b).

FLOOD YEARS

DROUGHT YEARS

May-July Rainfall (mm/mo)	May-July	Rainfall (mm/mo)
1991 89	1967	31
2010 88	1961	38
1999 86	2009	47
1993 83	1985	47
2005 83	2003	49
1965 79	1980	51
1977 78	1979	51
1986 77	1988	53

Note: 2001 65 mm (Heat related) 2002 57 mm (Heat related)

A) MODEL 1. (Stepwise) **Predictand:** June-August precipitation for prairies

Adj r-sq.63

U	nstandardiz	zed Coefficients t	Significance level
Constant	71.67	45.55	.00
WPNOV	4.76	4.00	.00
PNAJAN	-5.57	-3.10	.01
MJOAPR	-7.54	-2.56	.02
PNAMAY	2.97	2.44	.02

B) CORRELATION COEFFICIENTS BETWEEN INDICES AND JUNE-AUGUST RAINFALL

Ν	Predictor	s S	0	Ν	D	J	F	Μ	Α	Μ	J	J	Α	
	Туре				Months	5								
59	WP	.05	.18	.37 ^{\$}	.03	16	.00	.11	24	* .21	*12	14	.02	

~ /		-		~	-								
59	PNA	16	.07	.07	- . 14	27*	.10	.08	.09	.23*	.06	.09	.07
31	MJO	.13	07	.13	18	. 10	- . 47 ***	.03	32*.	01	.13 .	07 .C	7
59	PNA	16	.07	.07	14	27*	.10	.08	.09	.23*	.06	.09	.07

PNA, PDO and MJO COMPOSITE Predictand Prairie July PDSI

Fig. 1 Summations of PDO, PNA and MJO indices for the three driest, three median and three wettest summers as determined by the July PDSI during 1971-2010.

B) CORRELATION COEFFICIENTS BETWEEN INDICES AND PRAIRIE JULY PDSI

Ν	Predictors	S	0	Ν	D	J	F	Μ	Α	Μ	J	J	Α
40	PNA	.02	34**	-•53**	* .01	12	16	.05	.21	.25	16	.02	.26
40	PDO	.08	21 -	•35*	28*	26*	25	10	06	.05	.07	7.13	.01
40	MJO	.03	.12 -	•43**	. 18 ·	02	.05	05	11	32*	02	.04	.00
*Sie	gnificant at	5% Le	evel. *:	* Sign	ificant	: at 1%	۶ leve	. **	* Sie	gnific	ant a	nt .1%	leve

Predictand: Peace River July PDSI Agricultural Ecological Zone Adj. r. sq .54

Unstandardize	d Coefficients	t	Significance level.
Constant	-0.79	-2.64	.01
PRNOVPPT	.03	2.46	.02
PNAAPR	•35	2.43	.02
PNAMAY	•33	2.55	.02
PRPDSIJAN	•55	3.49	.00

B) CORRELATION COEFFICIENTS BETWEEN INDICES AND JULY PDSI, PEACE RIVER
N Predictors S O N D J F M A M J J A
Type Months
40 PNA -.20 -.24 -.26* -.00 .13 -.04 .02 .34* .30* -.06 .13 .11
40 PDSI .51*** .52*** .54*** .55*** .55*** .49*** .60*** .76*** .93***NP NP
40 PRPPT -.01 .21 .32* .12 -.07 .17 .07 -.04 .49*** .49*** NP NP

Svensmark and Calder 2007. The Chilling Stars: 'A New Theory of Climate Change'.

PRAIRIE MAY - JULY TEMPERATURES

Climate data sources: Ontario Climate Centre, 1980 – 2007, National Agro-climate Service (NAIS), Regina, SK 2008 – 2010, Environment Canada Website, 2011. Average of 403 good reporting stations.

Temperatures 2.5 degrees Celsius below normal May – Sept would bring insufficient heat units (1080 GDD's) to a mature spring wheat, comparable to 12 degrees Celsius on the above figure.

COMPOSITE JUNE-AUGUST SUNPOT ANOMALIES VERSUS JUNE-AUGUST TEMPERATURE ANOMALIES

CORRELATION MATRIX OF INDICES AND SUMMER TEMPERATURES

N	Predicto	r S	s o	Ν	D	J	F	Μ	Α	Μ	J	JA
	<u>Type</u>											
56	SSA	.24*	• .20	.20	.19	.21	.16	.23*	.28*	.25*	.30*	.27 .31*
50	CRA	22	24*	20	25*	22	21	27* -	•34** ·	•33**	-•35**	.1933**
										.	.	
55	API	.18	.20	.07	.12	03	.06	34 **	•33**	.28*	.28*	.22*.30*
	* Signifi	canta	at the	e 5% le	evel,	** Šig	gnific	ant at	the 1% l	evel,		

Monthly Global Cosmic Ray anomalies prior to the four coldest, four median and four hottest June-Augusts for the period 1960-2010

Table 1. Correlation coefficients between solar related predictors

and June-August temperatures over the prairies

	<u> </u>	0	N	D	J	F	Μ	A	Μ	J	J	<u>A</u>	
SSA	.24*	.20	.20	.19	.21	.16	.23*	.28*	.25*	.30*	.27	.31**	n = 56
API	.18	.20	.07	.12	03	.06	.34**	.33**	.28*	.28*	.22 '	* .30*	n = 55
CRA	.22	24*	20	25*	22	21	27*	34**	33**	35**	.19	33**	n = 50

MAJOR FINDINGS

1. A regression model was developed for forecasting summer (June-August) precipitation over the Canadian Prairies with a lead- time of 2-3 months. This four variable model explains or accounts for close to 66% of the variation in summer rainfall.

2. Composites were developed for foreshadowing prairie July PDSI, Palliser Brown Soil July PDSI and prairie summer temperatures with lead times up to four months.

3. A three-variable model was developed for forecasting the July PDSI in the Palliser North zone. This model accounts for close to 66% of the variation of the July PDSI between 1971 and 2009.

4 New and dominant predictors that emerged in this research were the Madden-Julian Oscillation (MJO), the Western Pacific Teleconnection index and solar related predictors such as the AP index. Better known predictors that came to the fore were Quasi-Biennial Wind Oscillation (QBO), Pacific North American teleconnection index (PNA) and Pacific Decadal Oscillation (PDO).

5.Solar related predictors were shown to influence Eastern Prairie March-May precipitation, Peace River June-July temperature, Eastern Prairie July PDSI and Prairie June-August temperatures with high (low) sunspot activity leading to a drier warmer (wetter, cooler) weather in each case.

ACKNOWLEDGEMENTS

I would like to acknowledge the assistance of Tammy Keedwell of the NRI in preparing this presentation, which is the culmination of a two and a half year research project, carried out at the Natural Resources Institute (NRI) of the University of Manitoba. This project was funded by The Manitoba Rural Adaptation Council (MRAC), Friends of Science (FOS) in Calgary Alberta, the University of Manitoba and Beyond Agronomy Inc. in Alberta. We thank Mr. Jeff Babb, Department of Mathematics and Statistics, the University of Winnipeg and Besong Taiwo, Department of Computer Science, the University of Manitoba, for their kind contributions in compiling a 110-year prairie climate database.

> Principal Investigator Dr. C.E. Haque, Supervisors: M.L. Khandekar and J.C. Babb Research Associate: E.R. Garnett